• Bob Holzman LMT

Over the past decade, I have noticed exponential growth in the self-massage tool industry. Tools now range from variations of small massage balls, foam rollers, canes, electric power massage tools to things that I don’t know what to call. Big picture wise, I believe this is a good thing, but it is not without a potentially dangerous downside. Today I want to focus on tools that are designed to work specifically on two of our major hip flexor muscles, the psoas major and the iliacus.

What makes self-massage with these tools potentially dangerous is the location of these muscles and the anatomy that you have to avoid damaging to get to them. If you look at images A & B, you will see that the psoas major and the iliacus (highlighted orange) are the deepest layer of muscle in the front of the spine and hip. In order to access those muscles, you have to make your way around the small (S) and large (C) intestines, which you can see in image C. These tools (image H & I) are designed to be placed into the abdomen with you laying face down; you will most certainly be pressing directly on these organs in that position. This leaves us open to potential injury, especially if there are any issues with poor digestion or bowel movement, both of which are common.

Image A: psoas major

Image B: iliacus

Image C: small (S) and large (C) intestines

The next layer down for hazards after the intestines are the abdominal aorta (red) and inferior vena cava (blue), which you can see in image D. These are two major blood vessels that you should not press on due to potential damage or blood flow restriction. Next, we have the lateral femoral cutaneous nerve (image E), the genitofemoral nerve (image F), and our ureters (image G). Now, as far as the nerves go, you will typically know when you are on them by the often sharp electrical pain, but you likely won’t know that you on a ureter until the damage is done and your self-massage session is finished. And, last but not least, there is the very real possibility of giving yourself an abdominal hernia, by going too deep too fast, or massaging a cyst or tumor when you think it is just a tight muscle.

Image D: abdominal aorta & inferior vena cava

Image E: lateral femoral cutaneous nerve

Image F: genitofemoral nerve

Image G: ureters

Image H: self-massage tool

Image I: self-massage tool

Doing safe massage of the psoas major and iliacus is an advanced skill. It requires formal training in anatomy and physiology and advanced palpation skills that take years to develop. Although it was something I learned in school by experienced teachers who were seasoned providers, I feel it could have been taught better.

I recognized early in my career that this was a skill that would require consistent practice and ongoing education to do safely and effectively. I have heard numerous stories of seasoned providers injuring their patients, such as causing an abdominal hernia, and there are countless licensed massage therapists that won’t work on these muscles because they are not comfortable with it. I mention these things to make the following point, if highly trained professionals can injure their patients, or are not comfortable doing this work, do you really think you should be doing it to yourself, even if advised to do so by your provider?

If all this information leaves you wondering why anyone in their right mind would use these tools (images H&I) for self-massage, or try to massage oneself with their own fingers, then I have not wasted my time writing this.

In closing, leave massage of these muscles to qualified professionals.

185 views0 comments
  • Bob Holzman LMT

I'm not sure if you remember, but at the beginning of December, I mentioned that I would donate 3% of my December income to Family of New Paltz. Well, here we are, December 31st, New Year's Eve, and I've finished my December finances. I'm very excited to say that 3% of my NET income for this month allows me to donate $175.00 to Family of New Paltz / Family of Woodstock. I chose to donate to Family because of the necessary and profound impact it has on the community, year after year.

I would not have been able to make a donation of this size without everyone that came in to see me this month to get on my table, in addition to purchasing gift certificates. For that, I feel a tremendous amount of gratitude. As I look toward tomorrow and the new year ahead, I continue to reflect on a quote from Mahatma Gandhi, “Be the change that you wish to see in the world.” This quote is a question, reflection and inspiration to me, every single day. If it is something that resonates with you, I invite you to hold it in your mind and heart, into 2018 and beyond.

May 2018 bring you authentic happiness beyond your deepest imagination, and challenges that test you to the core of your existence (only if you haven't already had your fill of that). In 2018, I wish for you to see things that you see every day, through the eyes of someone who has never seen it before. May you find new inspiration, and inspire the people in your lives, as well as perfect strangers, to be a positive force in this amazing and challenging thing we call life.

“Each morning we are born again. What we do today is what matters most.”      ~ Prince Gautama Siddharta

194 views0 comments
  • Bob Holzman LMT

A common question is, why am I sore after exercising? The standard reply and misconception, is " it's because of a lactic acid build up in your muscles". That's an answer that is given by not only the layperson but massage therapists, physical therapists, and doctors. Heck, that's what I was told in massage school. One thing I love about this field of work is that there is an endless amount of knowledge and new discoveries to learn from. Stay hungry!

I hope you enjoy reading this article written by Thomas Fahey, Ed.D., Professor of Exercise Physiology, California State University at Chico, as much as I have.

Lactic acid has a bad reputation. Many people blame it for fatigue, sore muscles, and cramps. They think of it as a waste product that should be avoided at all cost. Guess what? Scientists have discovered that lactic acid plays a critical role in generating energy during exercise. Far from being the bad boy of metabolism, lactic acid provides fuels for many tissues, helps use dietary carbohydrates, and serves as fuel for liver production of glucose and glycogen. In fact, lactic acid is nature's way of helping you survive stressful situations.

Lactic acid has a dark side. When your body makes lactic acid, it splits into lactate ion (lactate) and hydrogen ion. Hydrogen ion is the acid in lactic acid. It interferes with electrical signals in your muscles and nerves, slows energy reactions, and impairs muscle contractions. The burn you feel in intense exercise is caused by hydrogen ion buildup. So, when you fatigue, don't blame it on lactic acid. Rather, place the blame where it belongs- on hydrogen ion.

Lactate has been made guilty by association. Far from being a metabolic pariah, the body loves lactate. It is an extremely fast fuel that's preferred by the heart and muscles during exercise. Lactate is vital for ensuring that your body gets a steady supply of carbohydrates, even during exercise that lasts for many hours. Lactate is so valuable, that taking it as part of a fluid replacement drink before, during, or after exercise improves performance and speeds recovery.

Lactate is a friend to triathletes, distance runners, swimmers, and cyclists. When you learn the facts about lactic acid, you will think of it in a whole new light. Harness the power of lactic acid and you will increase your energy level and stave off fatigue.

Here are ten things you should know about lactic acid:

1. Lactic acid is formed from the breakdown of glucose.

During this process, the cells make ATP (adenosine triphosphate), which provides energy for most of the chemical reactions in the body. Lactic acid formation doesn't use oxygen, so the process is often called anaerobic metabolism. Lactate-related ATP production is small but very fast. This makes it ideal for satisfying energy needs anytime exercise intensity exceeds 50% of maximum capacity.

2. Lactic acid doesn't cause muscle soreness and cramps.

Delayed onset muscle soreness, the achy sensation in your muscles the day after a tough workout, is caused by muscle damage and post-exercise tissue inflammation. Most muscle cramps are caused by muscle nervous receptors that become overexcitable with muscle fatigue.

Many athletes use massage, hot baths, and relaxation techniques to help them rid their muscles of lactic acid and thus relieve muscle soreness and cramping. While these techniques probably have other benefits, getting rid of lactic acid isn't one of them. Lactate is used rapidly for fuel during exercise and recovery and doesn't remain in the muscles like motor oil.

3. The body produces lactic acid whenever it breaks down carbohydrates for energy.

The faster you break down glucose and glycogen the greater the formation of lactic acid. At rest and submaximal exercise, the body relies mainly on fats for fuel. However, when you reach 50% of maximum capacity, the threshold intensity for most recreational exercise programs, the body "crosses over" and used increasingly more carbohydrates to fuel exercise. The more you use carbohydrates as fuel, the more lactic acid you produce.

4. Lactic acid can be formed in muscles that are receiving enough oxygen.

As you increase the intensity of exercise, you rely more and more on fast-twitch muscle fibers. These fibers use mainly carbohydrates to fuel their contractions. As discussed, whenever you break down carbohydrates for energy, your muscles produce lactic acid. The faster you go, the more fast-twitch muscles you use. Consequently, you use more carbohydrates as fuel and produce more lactic acid. Increased blood lactic acid means only that the rate of entry of lactic acid into the blood exceeds the removal rate. Oxygen has little to do with it.

5. Many tissues, particularly skeletal muscles, continuously produce and use lactic acid.

Blood levels of lactic acid reflect the balance between lactic acid production and use. An increase in lactic acid concentration does not necessarily mean that the lactic acid production rate was increased. Lactic acid may increase because of a decreased rate of removal from blood or tissues.

Lactic acid production is proportional to the number of carbohydrates broken down for energy in the tissues. Whenever you use carbohydrates, a significant portion is converted to lactate. This lactate is then used in the same tissues as fuel, or it is transported to other tissues via the bloodstream and used for energy. Rapid use of carbohydrate for fuel, such as during intense exercise, accelerates lactic acid production. Temporarily, lactic acid builds up in your muscles and blood because it can't be used as fuel fast enough. However, if you slow down the pace of exercise or stop exercising, the rate of lactate used for energy soon catches up with the rate of lactate production.

Dr. George Brooks, a Professor from the Department of Integrative Biology at University of California at Berkeley, described the dynamic production and use of lactic acid in metabolism in his "Lactate Shuttle Theory." This theory describes the central role of lactic acid in carbohydrate metabolism and it's importance as a fuel for metabolism.

6. The body uses lactic acid as a biochemical "middleman" for metabolizing carbohydrates.

Carbohydrates in the diet are digested and enter the circulation from the intestines to the liver mainly in the form of glucose (blood sugar). However, instead of entering the liver as glucose and being converted directly to glycogen, most glucose from dietary carbohydrate bypasses the liver, enters the general circulation and reaches your muscles and converts into lactic acid. Lactic acid then goes back into the blood and travels back to the liver where it is used as building blocks for making liver glycogen. Your body produces much of its liver glycogen indirectly from lactic acid rather than directly from blood glucose.

Scientists call the process of making liver glycogen from lactic acid the "Glucose Paradox". The theory was formulated by famous biochemist Dr. J.D. McGarry and his associates. It shows the importance of lactic acid in carbohydrate metabolism.

7. During endurance races, such as marathons and triathlons, blood lactic acid levels stabilize even though lactic acid production increases.

This occurs because your capacity to produce lactic acid is matched by your ability to use it as fuel. Early during a race, there is a tremendous increase in the rates that muscle uptake and use glucose and breakdown glycogen. The increased rate of carbohydrate metabolism steps up production of muscle lactic acid, which also causes an increase in blood lactic acid.

As your body directs blood to your working muscles, you can shuttle the lactate to other tissues and use it as fuel. This reduces lactic acid levels in your muscles and blood, even though you continue to produce great quantities of lactic acid. However, you often feel better during the race or training. This relief is sometimes called "second wind".

Scientists use radioactive tracers to follow the use pattern of fuels in your blood and muscles. Their studies show that during exercise, lactic acid production and removal continue at 300-500 percent of resting rates, even though oxygen consumption has stabilized at submaximal levels.

8. The heart, slow-twitch muscle fibers, and breathing muscles prefer lactate as a fuel during exercise.

In the heart, for example, the uptake of lactate increases much fold as the intensity of exercise increases while uptake of glucose remains unchanged. These tissues suck up lactate at a fast rate to satisfy their energy needs.

9. Lactic acid is a very fast fuel that can be used to athletes' advantage during exercise.

The concentration of both glucose and lactic acid rise in the blood after a carbohydrate-rich meal, but the blood lactic acid concentration does not rise much because it is removed so rapidly. The body converts glucose, a substance removed from the blood only sluggishly, to lactate, a substance removed and used rapidly. Using lactic acid as a carbohydrate "middleman" helps you get rid of carbohydrates from your diet, without increasing insulin or stimulating fat synthesis. During exercise, you won't want an increase in insulin because it decreases the availability of carbohydrates that are vital to high-performance metabolism.

Why is lactic acid so important in metabolic regulation? The exact answer is unknown, but there do appear to be several physiological reasons. Lactic acid- in contrast to glucose and other fuels- is smaller and better exchanged between tissues. It moves across cell membranes by a rapid process called facilitated transport. Other fuels need slower carrier systems such as insulin. Also, lactate is made rapidly in large quantities in muscle and released into general circulation. Muscle cells with large glycogen reserves cannot release significant amounts of this potential energy source as glucose because muscle lacks a key enzyme required to produce free glucose that can be released into the blood.

Including lactate as part of a fluid replacement beverage provides a rapid fuel that can help provide energy during intense exercise. The rationale for including lactate in athletic drinks is simple- since the body breaks down so much of dietary carbohydrates to lactate anyway, why not start with lactate in the first place? Lactate in the drink can be used rapidly by most tissues in the body and serves as readily available building blocks for restoring liver glycogen during recovery.

10. Proper training programs can speed lactic acid removal from your muscles.

This can be achieved by combining high intensity, interval, and over-distance training. Athletes and coaches must learn to deal effectively with lactic acid. Fortunately, most training programs incorporate elements necessary to speed lactate removal. Training programs should build your capacity to remove lactic acid during competition.

Lactic acid formation and removal rates increase as you run, bike or swim faster. To improve your capacity to use lactate as a fuel during exercise, you must increase the lactic acid load very high during training. Training with a lot of lactic acid in your system stimulates your body to produce enzymes that speed the use of lactic acid as a fuel.

High-intensity interval training will cause cardiovascular adaptations that increase oxygen delivery to your muscles and tissues. Consequently, you have less need to break down carbohydrate to lactic acid. Also, better circulation helps speed the transport of lactic acid to tissues that can remove it from the blood.

Over distance, training causes muscular adaptations that speed the rate of lactate removal. Over distance training in running, swimming, or cycling increases muscle blood supply and the mitochondrial capacity. Mitochondria are structures within the cells that process fuels, consume oxygen, and produce large amounts of ATP. A larger muscle mitochondrial capacity increases the use of fatty acids as fuel, which decreases lactate formation and speeds its removal.

Nutrition is also important, strenuous training depletes glycogen reserves in the muscle and liver. A diet high in carbohydrates is essential for all endurance athletes. Carbohydrates supply an immediate source of glucose so the athlete has a feeling of well-being and a source of quick energy. Further, glucose is used to restore muscle glycogen from exercise. When the blood glucose and muscle glycogen reserves are renewed, glucose provides a source of lactate that helps replenish liver glycogen.


Lactic acid is an important fuel for the body during rest and exercise. It is used to synthesize liver glycogen and is one of our most important energy sources. Lactate is the preferred fuel source in highly oxidative tissues, such as heart muscle and slow-twitch skeletal muscle fibers. It is used rapidly by the body and is a valuable component in athletic fluid replacement beverages.

Lactic acid also is a powerful organic acid, and its accumulation can cause distress and fatigue during exercise. Athletes need both high intensity and over-distance training to improve the capacity to use lactic acid as a fuel during exercise and recovery. High-intensity training develops the cardiovascular capacity that reduces lactic acid transport to tissues that can use it as fuels. Over distance, training causes tissue enzymes adaptations that increase use of fatty acids for energy. This helps slow lactic acid production from carbohydrates and to enhance tissues ability to use lactic acid as fuel.


Ahlborg G., Felig P. Lactate and glucose exchange across the forearm, legs and splanchnic bed during and after prolonged leg exercise. J. Clin. Invest. 69: 45-54. 1982.

Ahlborg G., Wahren J., Felig R. Splanchnic and peripheral glucose and lactate metabolism during and after prolonged arm exercise. J. Clin. Invest. 77: 690-699, 1986.

Brooks G.A., Fahey T.D., White T. Exercise Physiology: Human Bioenergetics and Its Applications. Mt. View, CA: Mayfield Publishing Co., 1985.

Brooks, G.A. Lactate production under fully aerobic conditions. The lactate shuttle during rest and exercise. Fed. Proc. 45: 2924-2929, 1986.

Brooks, G.A. Mammalian fuel utilization during sustained exercise. Comp. Biochem. Physiol. 120: 89-107, 1998.

Brooks, G.A., Mercier J. The balance of carbohydrate and lipid utilization during exercise: the crossover concept (brief review). J. Appl. Physiol. 80: 2253-2261, 1994.

Brooks, G.A. and Trimmer J.K. Glucose kinetics during high-intensity exercise and the crossover concept. J. Appl. Physiol. 80: 1073-1074, 1996.

Donovan C.M., Brooks G.A. Endurance training affects lactate clearance, not lactate production. Am. J. Physiol. 244: E83-E92, 1983.

Hultman E.A. Fuel selection muscle fiber. Proc. Nutr. Soc. 54: 107-121, 1995.

Zinker B.A., Wilson R.D., Wasserman D.H. Interaction of decreased arterial PO2 and exercise on carbohydrate metabolism in the dog. Am. J. Physiol. 269: E409-E417, 1995.

175 views0 comments